【光電子學 I】課程綱要

課程名	夕纶	(中文) 光電子學 I					開課單位		光電工程研究所
	件	(英文) Photonics I					課號		IPT514000
學分婁	學分數 3						必/選修		專業選修
開課頻率 每學年				建請	養修課4	手級	四年級		
先修課程或先備能力:電磁學									
隸屬學程:		□ 電力工程學程		□ 數位訊號處理				光電工程學程	
		□ 計算機工程學	□ 電子工程學程					生物醫學電子學程	
		□ 電子電路設計學程		□ 通訊工程學程			□基礎課程		
課程類型:		☑ 講授		實驗	□ 演講		<u></u>	□ 其他:	
課程目標:光電工程基礎核心課程									
培養之核心能力:									
<u> </u>	一、豐富的數學、物理、科學與工程知識,以及實際運用的能力。								
	二、設計實驗、執行實驗、分析數據及歸納結果的能力。								
	三、執行電機工程實務所需理論、方法、技術及使用相關軟硬體工具之能力。								
	四、電機工程系統、模組、元件或製程之設計能力。								
<u> </u>	五、團隊合作所需之組織、溝通及協調的能力。								
	六、發掘問題、分析問題及處理問題的能力。								
	七、掌握科技趨勢,並了解科技對人類、環境、社會及全球的影響。								
]八、理解專業倫理及社會責任。								
∀	□ 九、專業的外語能力及與國際社群互動的能力。								
数學內 灾與課程大綱:									

- 1. Review of basic EM theory and concept of linear system pertinent to photonics
- 2. Ray optics: with emphasize on Fermat principle and application of ray transfer matrix
- 3. Beam optics: with emphasize on characteristics of Hermit Gaussian beams
- 4. Wave optics: basic priciples of scalar EM wave characteristics, propagation, and optical wave phenomena including interference
- 5. Fourier optics: establish solid conceptual understanding of wave propagation and imaging in conjunction with the mathematical tool of Fourier analysis and linear system. Optical diffraction.
- 6. EM waves: Full vector treatment of EM waves, optical properties of dielectrics and metals, dispersions and linear optics.
- 7. Polarization and crystal optics: polarization phenomena, characterization and application. Analysis on optical anisotropy and application.
- 8. Resonator optics: fundamental concept of resonator. Analysis on optical cavities: Fabry-Perot cavity, curved mirror cavity.
- 9. Statistical optics: basic concept of optical coherence and applications.
- 10. Photon optics: basic concept of quantum nature of EM waves.
- 11. Interaction of atom and light: basic of quantum aspect on electronic structures of materials, spontaneous and stimulated emissions, optical scattering.