【生醫積體電路設計】課程綱要

工 查 值 起 电				
課程名稱	(中文) 生醫積體電路設計	開課單位	電機工程學系	
	(英文) Biomedical VLSI Design	課號	EE4296	
學分數	3	必/選修	專業選修	
開課頻率	每學年	建議修課年級	三年級	
先修課程或先備能力:電路學、電子學、類比電路分析與設計、積體電路設計導論				
□ 電力工程學程 □ 數位訊號處理學程 □ 光電工程學程 □ 計算機工程學程 □ 電子工程學程 □ 生物醫學電子學程 □ 電子電路設計學程 □ 通訊工程學程 □ 基礎課程				
課程類型: 演講 演講 其他:				
課程目標:本課程介紹生醫應用相關的基礎知識以及積體電路設計技術。首先介紹深				
次微米效應、電晶體中雜訊、低功率/低雜訊生醫電子設計技術。接下來會介紹在生醫				
電子植入中供傳送資料/電力的無線射頻電路。生醫電子系統設計實例,諸如電子耳蝸				
植入、生物分子感測及心臟應用相關元件,主要針對系統層次的整合及設計考量介紹。				
最後,也會介紹到未來相關熱門應用技術,例如生物啟發(bio-inspired)及能量擷取系統				
(energy harvesting) •				
培養之核心能力:				
□ 一、豐富的數學、物理、科學與工程知識,以及實際運用的能力。				
□ 三、執行電機工程實務所需理論、方法、技術及使用相關軟硬體工具之能力。				
□、電機工程系統、模組、元件或製程之設計能力。				
□ 五、團隊合作所需之組織、溝通及協調的能力。				
○ 六、發掘問題、分析問題及處理問題的能力。				
□ □ 七、掌握科技趨勢,並了解科技對人類、環境、社會及全球的影響。				
○ 八、理解專業倫理及社會責任。				
□				
教學內容與課程大綱:				
1. 深次微米效應及電晶體中雜訊介紹				
2. 低功率類比及生醫電路:放大器及光接收器、濾波器及共震器、電流模式電路、神				
經啟發類比數位轉換器				
3. 生醫應用之低功耗射頻電路:能量擷取射頻天線功率連結、生醫植入系統中之射頻				
電路				
4. 生醫電子系統介紹:可植入式醫療電子、非侵入式醫療電子				
5. 生物啟發系統介紹				
6. 能量擷耳	6. 能量擷取系統介紹			